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ABSTRACT

We introduce a new strategy to evaluate the perceived
quality of spectral image reproductions. We rely on the idea
that spectral image difference can be computed by averaging
scores of a color image-difference measure, computed for
various viewing conditions. Two approaches are proposed to
ef�ciently approximate this quality prediction by taking ad-
vantage of image-difference redundancies across illuminants.
Our results suggest that, for the evaluated distortions, image-
difference features extracted from the lightness component
vary much less across illuminants than those from chroma
and hue components. For our setup, we could reduce the
numerical effort to compute the original prediction to 1.3%,
without impairing accuracy.

Index Terms— Image quality, Multispectral imaging.

1. INTRODUCTION

Despite the ability of our visual system to adapt to different
viewing conditions, a material's color is not perceived con-
stant across illuminants. This phenomenon is referred to as
illuminant metamerism[1]. For example, when one image is
printed on paper by two different devices, the resulting prints
may look identical under daylight but drastically different un-
der incandescent light (see, e.g., the metacow data [2]). This
is due to the fact that traditional metameric work�ows en-
sure that the perceived quality is optimized under a certain
illuminant, but give little control over others. In a spectral1

work�ow, various viewing conditions can be considered with
a much higher accuracy and a greater control.

Although there is a great deal of literature on Image Qual-
ity Assessment (IQA) for greyscale [3, 4] and color (RGB)
images [5], spectral work�ows require an IQA with higher
dimensionality. Spectral image reproduction and processing
(gamut mapping [6, 7, 8], separation [9], compression [10],
dimensionality reduction [11, 12]) suggests indeed a need for
Spectral Image Quality Assessment (SIQA), based on human
judgment and perception.

There already exist a variety of criteria for SIQA, partic-
ularly in the remote sensing community [13], but very little
work has actually been done to evaluate this quality in terms

1In this paper,spectralrefers to eithermulti- or hyper-spectral.

of perception. However, perceptual measurements require to
consider certain Viewing Conditions (VC) according to which
quality may vary (see Figure 3). Thus perceptual measure-
ments cannot be achieved directly in the spectral space, or at
least not accurately [14, 15]. Therefore, there is a need fora
SIQA that takes into account all aspects of human judgment
under a variety of VC. Morovi�c et al. introduced the MIPE
measure [16], which consists of computing statistics of the
CIEDE2000 difference between two stimuli under several il-
luminants. Agahianet al. [17] considered a set of illuminants,
over which they applied Principal Component Analysis to ex-
tract a small number of so-calledvirtual illuminants, able to
represent all the set. A similar idea was used more recently by
Zhanget al. to create an interim connection space for spectral
gamut mapping [18]. Nevertheless, there exist no framework
allowing to compare ef�ciently spectral images w.r.t. to all
the aspects of human vision and various VC. Note that, when
it comes to considering VC in spectral imagery, the most in-
�uential feature is certainly the spectral power distribution of
the scene illuminant. Therefore, only changes in the scene il-
luminant are considered in this study. The remaining VC (e.g.
standard observer or viewing distance) are assumed to be of
negligible in�uence.

Averaging IQA results over a large set of illuminants is
computationally inef�cient. First because different VC may
yield very similar renderings and thus similar IQA, which
implies redundant information. Secondly, because certain
kinds of distortions remain identical under various VC. We
found, indeed, that image-difference features extracted from
the lightness component are illuminant-independent in most
cases. Therefore, we propose a computationally ef�cient
strategy to pool the IQA of a spectral image under various
VC utilizing a slightly modi�ed existing IQA measure.

2. MULTI-ILLUMINANT POOLING STRATEGY

2.1. Image-Difference Measure

In this study, we use a slightly modi�ed version of the Color
Image-Difference (CID) measure proposed by Lissneret al.
[5] for its good performances compared to the state of the
art in color IQA and also because it allows to manipulate a
variety of features individually, as explained hereafter.
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Fig. 1. The modi�ed Color Image-Difference (CID) measure accounts for the viewing illuminant by transforming the spectral
images to the CIEXYZ color space following a chromatic adaptation transformation (CAT).

In the CID framework, the two trichromatic images to
compare are �rst normalized w.r.t. the VC by an image-
appearance model and then rendered in the perceptually
uniform LAB2000HL color space [19]. Image-Difference
Features (IDFs) for Lightness-Difference (L L ), Lightness-
Contrast (CL ), Lightness-Structure (SL ), Chroma-Difference
(L C ) and Hue-Difference (L H ) are then extracted. For this
purpose, intermediate difference-maps need to be computed
using terms adapted from the SSIM index [3]. Finally, the
IDFs are fused into a single score, predicting the overall
perceived difference of the two images(I 1; I 2) under the
considered VC (parameters of IDFs are omitted for brevity):

CIDVC(I 1; I 2) = 1 � L L CL SL L C L H : (1)

A detailed description of the CID measure (particularly of the
IDFs) goes beyond the scope of this paper and we refer to Ref.
[5] and the source code provided by Lissneret al. [20].

Our application requires slight modi�cations of the CID
measure: 1. The spectral images need to be transformed into
trichromatic (CIEXYZ) images for the actual viewing illumi-
nant. 2. Chromatic adaptation needs to be considered, which
is “the human visual system's capability to adjust to widely
varying colors of illuminantion in order toapproximately
preserve the appearance of object colors” [21]. For this pur-
pose, we use the chromatic adaptation transformation (CAT)
employed by CIECAM02 [21].

In the following, we use the modi�ed CID-measure (see
Figure 1) with spectral images(I 1; I 2) as inputs.

2.2. Spectral Image Difference

In order to asses the quality of a spectral image reproduction
in terms of perception, the most straightforward approach is
to consider certain VC to render the images and then apply
a traditional image-difference measure such as CID. When
a variety of VC is to be taken into consideration, the average
value can serve as an overall score. We thus de�ne the average
CID between two spectral imagesI 1 andI 2 under a set of VC,
as the Spectral Image Difference (SID):

SID(I 1; I 2) =
1

NVC

N VCX

j =1

CIDVCj (I 1; I 2) (2)

whereNVC is the number of considered VC. The rest of this
study consists of approximating this quantity with lower com-
putational cost. Therefore, we rely on the SID as a reference
value. Note that we do not consider here any weighting of the
VC, although it is possible for instance to rank the illuminants
according to their importance in a particular application.

2.3. Multi-Illuminant Pooling

For a large set of illuminants� , computing all theNVC CID
scores is a tedious and unnecessary task for two reasons:

� Different illuminants may yield very close renderings
and similar IQA, thus implying someredundancy in
the set of illuminants.

� Certain kinds of distortions may be perceived in the
same manner under different illuminants, thus imply-
ing thatonly a few features actually need to be mea-
sured for all illuminants , while the rest can be com-
puted only once. We assume for example that distor-
tions of chroma and hue are more likely to vary from
one illuminant to another than distortions of lightness.

In order to account for the inter-illuminant redundancy,
we propose to extract a small number of spectra from� able
to represent the whole set. For this purpose, we use two dif-
ferent approaches:

� Principal Component Analysis (PCA), produces or-
thogonal components with high energy (variance).

� Linear Prediction-based Feature Selection (LPFS), se-
lects components with maximal orthogonality [22].

The main difference between these techniques is that PCA
creates so-calledsynthetic(or virtual) illuminants, new spec-
tra that do not exist in� , whereas LPFS selects the most dis-
similar spectra from� . In both cases, we will refer to the



extracted components as Representative Illuminants (RI).Be-
cause PCA may produce negative spectra, all RI are normal-
ized to the intensity range[0; 1]. Note also that the LPFS strat-
egy starts with selecting two most dissimilar spectra. There-
fore, it is unable to extract less than two RI. Figure 2 shows
the resulting RI obtained from the set of illuminants described
in the next section.

We then propose to use the following approximation to
compute the SID:

SID(I 1; I 2) �
N RIX

j =1

� j CIDRIj (I 1; I 2) (3)

whereNRI is the number of RI and� j is the weight of RIj ,
thej -th RI. These weights are de�ned by the eigenvalues for
PCA and the selection rank for LPFS normalized to satisfyP N RI

j =1 � j = 1 .
Now that we have considerably reduced the number

of rendered images to take into account, let us have a
closer look at the use of the CID on them. As stated ear-
lier, the CID measure evaluates discrepancies in terms of 5
IDFs: Lightness-Difference, Lightness-Contrast, Lightness-
Structure, Chroma-Difference and Hue-Difference. These
features are measured for each pair of rendered images. That
is, if 3 RI are generated, 15 feature maps need to be computed
to compare two reproductions. During our experiments, we
observed that theL L , CL and SL maps are almost invari-
ant under all considered illuminants (correlations coef�cients
higher than 0.95 in most cases), which implies that they
can basically be computed only once for the whole set� .
In other words, given the difference of two images under
a certain illuminant, the error added by considering other
illuminants can be summarized solely in terms of Chroma-
and Hue-Difference. Consequently, we propose the following
approximation for the SID:

SID(I 1; I 2) � 1 � (L 1
L C1

L S1
L L 1

C L 1
H ) � 1

N RIY

j =2

(L j
C L j

H ) � j (4)

whereL j
L ; C j

L ; Sj
L ; L j

C ; andL j
H are the IDFs under RIj . The

exponents� j are de�ned as in eq. (3).
For the sake of clarity, we will denote the quantities in

equation (3) and (4) byA1-SID (Approximation 1) andA2-
SID (Approximation 2), respectively. Results are presented
and discussed in the next section.

3. EXPERIMENTS AND RESULTS

3.1. Illuminants

For our experiments, we used a total of 74 illuminants: four
CIE daylights (with CCT of 5000, 6500, 8000 and 10000),
the CIE A and Fluorescent Series as well as the full collection

made available by the National Gallery of London [23], which
includes LED, �uorescent and tungsten-based lights. Figure
2 depicts the RI extracted from this set.
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Fig. 2. Representative illuminants

3.2. Images

The 16 multispectral images of natural scenes from Fosters'
databases [24] were used in this study. They contain between
31 and 33 channels covering the visible wavelength range.

To create distorted images, we rendered two reproduc-
tions for each reference image based on a naive spectral
gamut mapping approach. We used the spectral gamut of
a Canon iPF5000 printer utilizing CMYKRGB inks. Every
reference image was transformed to the LAB2000HL color
space [19] for illuminant D65. Out-gamut pixels were then
mapped to their closest in-gamut pixels (in terms of Euclidean
distance within the LAB2000HL color space). A metameric
re�ectance for each in-gamut pixel was then randomly se-
lected from the set of all printable metamers. The resulting
spectral reproduction is here denoted byr 1. A second repro-
duction, calledr 2, was obtained similarly but optimized for
illuminant A. Examples are shown in Figure 3.

Note that the conversion from re�ectance data to CIEXYZ
tristimuli was made assuming a CIE 10� standard observer.

3.3. Results

In order to evaluate the accuracy of the proposed approxima-
tions A1-SID andA2-SID, we used the correlations coef�-
cients between them and the original SID, noted respectively
� SID;A1-SID and� SID;A2-SID. Moreover, we also evaluated the
ability of each approximated measure to perform a choice be-
tween two reproductions. Given the SID score of each re-
productionr 1 andr 2, as compared to the original image, we
selected the best reproduction for each of the 16 scenes, i.e.
the reproduction with the smallest SID. These results were
then used as ground truth to estimate the so-called hit rate
of A1-SID andA2-SID, de�ned as the ratioG=T of correct
decisionsG over the total number of decisionsT. Table 1
gathers the results of our experiments.



Fig. 3. Examples of renderings. Row-wise: D65 and A illuminant (including CIECAM02 chromatic adaptation). Column-wise:
r 1, original, r 2. Despite the slight ambiguity caused by the structural artifacts, most observers would preferr 1 under daylight
but r 2 under illuminant A.

� SID;A1-SID � SID;A2-SID Hit rate
r 1 r 2 r 1 r 2 A1-SID A2-SID

1-PCA 0.98 0.99 0.98 0.99 1.00 1.00
2-PCA 0.99 0.99 0.98 1.00 1.00 1.00
2-LP 0.99 0.95 0.95 0.75 0.50 0.62
3-LP 0.99 0.98 0.86 0.87 1.00 0.93
4-LP 0.99 0.99 0.82 0.91 1.00 1.00

Table 1. Correlations and hit rates. 2-PCA denotes that 2
PCA-based RI were used, and respectively for the other no-
tations. The cumulated energies of the �rst principal compo-
nents are respectively: 66.96% and 87,32%.

We note that, overall, extremely high correlations are ob-
tained, which supports the assumptions about inter-illuminant
redundancies and shows that only a small fraction of the in-
formation from� is required for SIQA. With only one PCA-
based synthetic illuminant (retaining no more than 66.96% of
the inter-illuminant variablity), it is possible to achieve the
same decisions than with the full 74-dimensional set� , on
the 16 images used in this study. On the other hand, using
LPFS to select a subset of� as representative spectra also
allows for very good accuracy, and these results imply that
up to 94% (70 out of 74) of the illuminants considered in this
study can be absolutely discarded to compute an accurate SID
score. For a pair of images, only5+2(NRI � 1) maps need to
be computed to obtain the same result as SID, which requires
the computation of5NVC maps, that is a ratio of down to 1.3%
(for NRI = 1 andNVC = 74). Finally, these results support
the hypothesis that lightness-based differences are redundant
across illuminants asA2-SID yields correlations up to 100%

with SID.

4. CONCLUSIONS

We introduced a new strategy to evaluate spectral image re-
production, based on human judgment and perception. After
rendering the spectral images to compare w.r.t. various view-
ing conditions, we use the average score from the recently
proposed Color Image-Difference (CID) by Lissneret al. as
a reference value. We then proposed two strategies to ef-
�ciently approximate this reference by taking advantage of
image-difference redundancies across illuminants:A1-SID
and A2-SID. We found, indeed, that image-difference fea-
tures extracted from the lightness component are illuminant-
independent in most cases. Our results on a drastically re-
duced set of illuminants and by considering only chroma and
hue changes across illuminants show that it is possible to cre-
ate a very good approximation while reducing the computa-
tional requirements down to 1.3% of the complexity of the
SID. Nevertheless, several aspects of this study need further
investigations, such as the use of other kinds of spectral im-
age distortions or the robustness of our strategies in extreme
cases. Moreover, visual experiments need to be designed and
conducted to obtain the absolute prediction performance of
the proposed measure.
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