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bstract. Spectral separation is the process of obtaining printer
ontrol values to reproduce a given spectral reflectance. Given a
ultispectral image where each pixel represents a spectral reflec-

ance, separation could be implemented by inverting a physical
rinter model on a pixel-by-pixel basis. Such a process would obvi-
usly need to be very fast to handle high-resolution images in a
easonable time. For a printer whose spectral response is charac-
erized by the Yule–Nielsen spectral Neugebauer model, the linear
egression iteration (LRI) method can be used to invert the model.

e introduce the subspace linear regression iteration (SLRI)
ethod, a modification of LRI shown to be significantly accelerated
ue to performing its calculations within the subspace determined
y the Neugebauer primaries. Using this subspace approach, the
umber of multiplications becomes independent of the spectral sam-
ling rate. Using a standard six color printer and a common spectral
ampling rate, the number of multiplications can be decreased by
bout two-thirds without changing the convergence behavior.
2007 SPIE and IS&T. �DOI: 10.1117/1.2805447�

Introduction
o reproduce multispectral images by a printer, suitable
ontrol values need to be calculated to minimize the dis-
ance to the original by means of a spectral metric. This
rocess is called spectral separation. In contrast to tradi-
ional separation techniques, which try to adjust the print so
hat it matches the original for exactly one illuminant �e.g.,
CC1 using CIELAB�, the main aim of spectral separation
s to minimize the effect of metamerism for more than one
lluminant. The match between the original and the repro-
uction should be invariant under illuminant changes. Un-
ortunately, printing devices are, in general, not able to re-
roduce most of the natural reflectances, so that spectral
amut mapping2–4 is an important part and the first stage of
he process. The second stage of spectral separation is the
nversion of a spectral printer model representing a predict-
ng function from control value space into reflectance
pace.

In recent years, various spectral printer models have
een developed.5 Many of them are extensions of the well-
nown Neugebauer model.6 Due to its simplicity and accu-
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racy, the Yule–Nielsen modified Neugebauer model7,8 and
its spectral expansion,9,10 the Yule–Nielson spectral Neuge-
bauer �YNSN� model, have become the most popular mod-
els and are widely used today for printer characterization.
Unfortunately, an analytical inversion of the YNSN model
is generally not possible, although several approaches have
been proposed using iterative optimization techniques.11–14

By utilizing the multilinearity of the YNSN model in 1 /n
space, the linear regression iteration �LRI� method15 per-
forms the inversion in terms of the minimal RMS error in
1 /n space and uses only two matrix-vector multiplications
for each iteration step.

For the spectral-based separation of high-resolution mul-
tispectral images, processing speed is one of the major con-
siderations for practical applications. The goal of this paper
is to investigate an approach to spectral model inversion
that reduces the number of computations necessary to cre-
ate an accurate separation for spectral reproduction en-
abling direct model inversion on a pixel-by-pixel basis. The
number of multiply instructions needed for the LRI inver-
sion of a YNSN model is decreased significantly without
changing the convergence behavior by performing the itera-
tions within the subspace determined by the Neugebauer
primaries.

It is outside the scope of this paper to address the accu-
racy of the YNSN model for printers. Reference is made to
Rolleston and Balasubramanian16 and Wyble and Berns5 for
that purpose. Here, the inversion of the model is of interest.
Thus, for the sake of the present discussion, the YNSN
model will be considered to be accurate in its forward
implementation for the printers in question.

1.1 The Yule–Nielsen Spectral Neugebauer (YNSN)
Model

The YNSN6–10 model is one of the most widely used mod-
els for the prediction of reflectance spectra produced by a
printer. The important effect of optical dot gain is incorpo-
rated through the use of an empirical factor that can be
derived using a relatively small number of measurements.
Assuming a uniform distribution of the dots on the sub-
strate, the general YNSN model for an m-colorant printer

takes the form

Oct–Dec 2007/Vol. 16(4)1
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���� � = ��
i=1

2m

ai��� �Ri,�
1/n�n

, �1�

here �� = ��1 , . . . ,�m�T, �i� �0,1�, are the effective area
overages of the colorants �e.g., CMY�, Ri,� are the Neuge-
auer primaries, n is the empirical Yule–Nielsen factor

odeling the optical dot gain, and ai��� � are the Demichel
quations

i��� � = �
j=1

m

� j
p�i,j��1 − � j�1−p�i,j�, �2�

p�i, j� =
bitand�2�j−1�,i − 1�

2�j−1� . �3�

athematically, the Demichel equations are the weighting
unctions of the Neugebauer primaries used by multilinear
nterpolation. Table 1 shows an example for a CMY printer.

To use the YNSN model, the control values must be
ransformed initially to the effective area coverages per-
ormed in practice by one-dimensional lookup tables. A
etailed description of the YNSN model including physical
ackgrounds is given in Refs. 17–20. Fitting techniques for
he n-value and the calculation of the effective area cover-
ges can be found in Ref. 21.

.2 The Linear Regression Iteration (LRI) Method
o invert the YNSN model for an m-colorant printer by
eans of the minimal spectral RMS error for a given re-
ectance spectrum r�, the following constraint optimization
roblem has to be solved:

Minimize

R���� � − r�	2
2 �4�

ith the constraint

� � �0,1�m, �5�
2

Table 1 Example of the Demichel equations for a CMY printer.

i p�i ,1� p�i ,2� p�i ,3� ai��c ,�m ,�y�

1 0 0 0 a1��c ,�m ,�y�= �1−�c��1−�m��1−�y�

2 1 0 0 a2��c ,�m ,�y�=�c�1−�m��1−�y�

3 0 1 0 a3��c ,�m ,�y�= �1−�c��m�1−�y�

4 1 1 0 a4��c ,�m ,�y�=�c�m�1−�y�

5 0 0 1 a5��c ,�m ,�y�= �1−�c��1−�m��y

6 1 0 1 a6��c ,�m ,�y�=�c�1−�m��y

7 0 1 1 a7��c ,�m ,�y�= �1−�c��m�y

8 1 1 1 a8��c ,�m ,�y�=�c�m�y
here 	 . . . 	2 in Eq. �4� denotes the square of the 2-norm.
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The LRI method15 uses the discrete formulation of the
problem by sampling the spectra at N wavelengths, so that
each continuous spectrum is transformed into an
N-dimensional vector. A typical sampling distance is 10 nm
in the wavelength range of 400–700 nm,22 resulting in N
=31.

The LRI method utilizes the property of the YNSN
model to be multilinear in 1 /n space, i.e., for each �i, the
following decomposition of the YNSN model in 1 /n space
applies:

R�
1/n��� � = Ai��� � · �i + Bi��� � , �6�

�Ai��� �
��i

=
�Bi��� �

��i
= 0. �7�

Equation �7� is equivalent to the independence of Ai��� � and

Bi��� � from �i.
Setting the right side of Eq. �6� equal to the given re-

flectance r�
1/n allows the optimal calculation of �i in the

sense of the minimal RMS error in 1 /n space using simple
linear regression:

�i
min =

A� i
T��� ��r� − B� i��� ��

A� i
T��� �A� i��� �

, �8�

where A� i��� �, B� i��� �, and r��RN are the discrete approxima-

tions of Ai��� �, Bi��� �, and r�
1/n. Iterating this equation by

successively recalculating the �i and considering the con-
straint in Eq. �5� leads to the LRI algorithm with starting

point �� = ��1
0 , . . . ,�m

0 �T:

1. REPEAT 

2. FOR �i=1; i�m; i= i+1�
3. 

4. �i=A� 1

T��� ��r�−B� i��� �� / �A� 1
T��� �A� i��� ��;

5. IF ��i�0� 
�i=0�;
6. IF ��i�1� 
�i=1�;
7. �
8. � UNTIL Termination

A detailed explanation of the convergence behavior of the
LRI method is given in Urban and Grigat,15 where recom-
mendations for implementation can also be found.

1.3 Termination Criteria

The following criteria are proposed by Gill et al.23 if it is
desired that the value of the objective function at the point

�� k agree with the first q decimal places of the real mini-
mum:

C1: F��� k−m�−F��� k����1+F��� k��,
C2: 	�� k−m−�� k	����1+ 	�� k	�,
C3: k�kmax,

−q
where �ª10 and F is our discrete objective function, i.e.,

Oct–Dec 2007/Vol. 16(4)2
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��� � = 	R� ��� � − r�	2
2. �9�

ere, R� ��� � and r� are the discrete approximations of R�
1/n��� �

nd r�
1/n. The iteration can be terminated when C1 and C2

re satisfied or when condition C3 occurs, where kmax is a
ser-defined maximum number of iteration steps.

.4 Complexity of the LRI Method
nlike many iterative optimization techniques, such as
ewton-like methods, the LRI method requires neither an

valuation of the Jacobi or Hesse matrix nor a solution to a
inear equation system. One iteration step consists mainly
f two simple matrix-vector multiplications.

The number of multiplication operations N for each it-
ration of the LRI method is dependent on the number of
olorants m and the spectral sampling rate N. The multipli-
ations are needed to determine the regression term at line
of the algorithm. The majority of multiplications are nec-

ssary to calculate the vectors A� i��� and B� i���. These
ectors can be calculated by multiplying a vector

� i��� ��R�2m−1� with the �N�2m−1�-dimensional matrices Ai

nd Bi:

�
i��� � = Aiv� i��� � , �10�

�
i��� � = Biv� i��� � , �11�

here v� i��� �= �vi
1��� � , . . . ,vi

2m−1
��� ��T and

ig. 1 �a� Usual Neugebauer primaries of a six-colorant printer. �b�:
he same Neugebauer primaries after the coordinate transform us-

ng the unitary matrix UT.

Fig. 2 Schematic visualization of the subspace

nate system. Reducing the dimensionality to K does n

ournal of Electronic Imaging 043014-
vi
k��� � = �

j=1

m−1

�ij

p�k,j�, ij =  j , j � i ,

j + 1, j � i .
� �12�

Ai and Bi are not dependent on the effective area coverages
and can be determined once by simply expanding and rear-
ranging the YNSN model. An example of the matrices Ai

and Bi and the vector v� i��� � is given in the Appendix.

The calculation of v� i��� � has to be performed for each
iteration and needs �2m−1−m� multiplications; the calcula-
tion of the matrix-vector multiplications in Eqs. �10� and
�11� needs N ·2m−1 each. In addition, 2N multiplications are

necessary to calculate the two scalar products A� i
T��� ��r�

−B� i��� �� and A� i
T��� �A� i��� � in Eq. �8�. The total number of

multiplications cumulates to

N�N,m� = �2m−1 − m� + N · 2m + 2N . �13�

For an m=6 colorant printer and a spectral sampling rate of
N=31, each iteration step of the LRI method needs

N�31,6� = �26−1 − 6� + 31 · 26 + 2 · 31

= 30 + 1984 + 62 = 2072 �14�

multiplications. This seems like a lot but should be viewed
in relation to the calculation of the forward YNSN model
that needs �2m−1−m�+N ·2m+N=2041 multiplications if
calculated according to Eq. �6�.

The majority of multiplications has to be performed for
calculating the matrix-vector multiplications in Eqs. �10�
and �11�. Performing the iteration within the subspace de-
fined by the Neugebauer primaries reduces the row dimen-
sion of the matrices and therefore the number of required
multiplications drastically without changing the conver-
gence behavior. In the next section, the concept of the sub-
space calculation is presented and the minor changes on the
LRI method are described.

2 The Subspace Approach
The spectral gamut of usual printers is low in dimension
compared to the whole spectral space. On the one hand, this
seems to be a drawback since multispectral images cannot
be reproduced generally in an error-free way and spectral

ach: Multiplying with UT transforms the coordi-
appro

ot change the accuracy.

Oct–Dec 2007/Vol. 16(4)3
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amut mapping transformations are necessary. On the other
and, this is a large advantage for saving computational
ffort.

The new subspace approach is based on the length-
reserving properties of unitary transformations, i.e., if X is
real-valued, unitary matrix �XTX=XXT= I� and x� is a vec-

or, the following equation applies:

Xx�	2 = ��Xx��T�Xx�� = �x�TXTXx� = �x�Tx� = 	x�	2. �15�

f we apply this to the discrete form of the objective func-
ion �4� in 1 /n space, we can multiply the difference spec-
rum with each real-valued, unitary matrix X without
hanging the function values:

R� ��� � − r�	2
2 =

�15�

	X�R� ��� � − r��	2
2 �16�

=	XRa���� � − Xr�	2
2, �17�

here r�= �r�1

1/n , . . . ,r�N

1/n�T is the discretized reflectance spec-

rum in 1 /n space, R� ��� �= �R�1
��� �1/n , . . . ,R�N

��� �1/n�T is the
iscretized YNSN predicted spectrum in 1 /n space, R

�R� 1 , . . . ,R� 2m� is the matrix of the Neugebauer primaries

aised to the power of 1 /n, i.e., R� i= �Ri,�1

1/n , . . . ,Ri,�N

1/n �T, and

���� �= �a1��� � , . . . ,a2m��� ��T is the vector of the Demichel
quations defined in Eq. �2�.

The real-valued, unitary matrix X performs an orthonor-
al basis transformation of the spectral space. If we can
nd a matrix X that transforms the basis of the spectral
pace in a way that a small number of the new basis vectors
pan the subspace effectively defined by the Neugebauer
rimaries, the remaining dimensions can be omitted, since
hey are not affected by the YNSN model �see Figures 1
nd 2�.

This matrix can easily be found by a singular-value de-
omposition of the matrix R:

= USVT, �18�

here the real-valued, unitary matrix U= �u�1 , . . . ,u�N� con-
ains the characteristic spectra of the Neugebauer primaries
s column vectors sorted according to their variances �or
ingular values�, which are the diagonal elements of the

ig. 3 Neugebauer primaries used in simulation experiments. �a�
anon i9900 dye-based inkjet printer using six inks �cyan, magenta,
ellow, black, red, and green� on Canon Photo Paper Pro �PR-101�.
b� Epson Stylus Pro 5500 pigment-based inkjet printer using six
nks �cyan, magenta, yellow, black, orange, and green� on Epson
hoto-quality glossy paper �KA3N20MDK�.
atrix S. The singular values are sorted in descending or-

ournal of Electronic Imaging 043014-
der, i.e., si�si+1, and for common printers only few are
significantly larger than zero. The column vectors of U,
which belong to these K singular values, K	N, span the
subspace effectively defined by the Neugebauer primaries.
If the sampling rate is larger than the number of Neuge-
bauer primaries, i.e., N�2m, we extend, without changing
the matrix R, the �N�2m�-dimensional matrix S and the
2m�2m real-valued, unitary matrix VT by zero values, so
that S becomes an �N�N�-dimensional matrix and VT an
�N�2m�-dimensional matrix. We denote the whole diago-
nal elements of S by si, so that for N�2m, si=0, i�2m.

To transform the coordinates of the spectral space con-
sistent with the Neugebauer subspace, we have to set �see
Fig. 1�

X ª UT. �19�

Inserting Eq. �19� into Eq. �17� results in

	R� ��� � − r�	2
2 =

�17��19�

	UTRa���� � − UTr�	2
2 �20�

=
�18�

	SVTa���� � − UTr�	2
2 �21�

�22�

��
i=1

K

�siv� i
Ta���� � − u� i

Tr��2 + �
i=K+1

N

�u� i
Tr��2. �23�

In Eq. �22�, the term siv� i
Ta���� � in the second sum can be

neglected because si�0, 	a���� �	1�1, and the matrix VT is
unitary, i.e., 	v� i	2=1 �or in the case of N�2m, v� i=0,
i�2m as set above�.

Since we are interested in the effective area coverages ��

that minimize the objective function, we can omit the sec-

ond sum in Eq. �23� because it is independent of �� .
Therefore, the solution of the discretized minimization

problem �4� and �5� in 1 /n space is approximately the same

Fig. 4 The multispectral images used in Simulation II transformed in
sRGB: �a� Young Girl 147�87 pixels; �b� Fruits and Flowers
120�160 pixels.
as the solution of the following optimization problem:

Oct–Dec 2007/Vol. 16(4)4
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UK
TR� ��� � − UK

Tr�	2
2 =

!

min �24�

ith the constraint

� � �0,1�m, �25�

here UK
T = �u�1 , . . . ,u�K�T is the matrix containing the first K

ost significant characteristic spectra of the Neugebauer
rimaries.

.1 Determination of K

ince the Demichel equations a���� �= �a1��� � , . . . ,a2m��� ��T

atisfy �ai��� �=1, ai��� ��0, and ∀i� 
1, . . . ,2m�∃��

�0,1�m :ai��� �=1, and V in Eq. �18� is unitary, the follow-
ng equation applies:

ax
��

�v� i
Ta���� �� = max

j
�vij� ¬ vi

max � 1. �26�

fter defining an application dependent threshold T, de-
cribing the maximal acceptable difference of predicted and
iven reflectance in 1 /n space, K can be chosen as follows:

= min j � 
1, . . . ,N���
N

sivi
max � T� . �27�

Table 2 RMS results for Simulation I. For each
error and the average number of iterations were
31 is similar to the plain LRI method.

K

Canon

RMS Iterat

Mean Std Max Me

1 0.148 0.231 2.457 11

2 0.073 0.106 1.515 19

3 0.038 0.046 0.900 30

4 0.027 0.031 0.709 55

5 0.023 0.026 0.272 62

6 0.017 0.020 0.205 74

7 0.014 0.018 0.204 79

8 0.012 0.015 0.204 83

9 0.012 0.015 0.195 84

10 0.011 0.015 0.195 86

11 0.011 0.014 0.195 87

] ] ] ] ]

31 0.011 0.014 0.195 88
i=j

ournal of Electronic Imaging 043014-
2.2 Revision of the LRI Method

The new algorithm has the following form with starting

point �� = ��1
0 , . . . ,�m

0 �T:

1. REPEAT 

2. FOR �i=1; i�m; i= i+1�
3. 

4. �i= �UK

TA� i��� ��T �UK
Tr�−UK

TB� i��� ��/
��UK

TA� i��� ��T �UK
TA� i��� ���;

5. IF ��i�0� 
�i=0�;
6. IF ��i�1� 
�i=1�;
7. �
8. � UNTIL Termination

According to Eqs. �10� and �11�, the multiplications with
UK

T can be calculated in advance, i.e.,

UK
TA� i��� � = UK

T�Aiv� i��� �� = �UK
TAi�v� i��� � , �28�

UK
TB� i��� � = UK

T�Biv� i��� �� = �UK
TBi�v� i��� � , �29�

where UK
TAi and UK

TBi are �K�2m−1�-dimensional matrices.
We denote the new algorithm the subspace linear re-

mean, standard deviation, and maximal RMS
ated for all Yule–Nielsen n-values. A K value of

Epson

RMS Iterations

Mean Std Max Mean

0.227 0.273 2.430 11.9

0.116 0.145 1.398 16.5

0.058 0.076 1.006 34.0

0.026 0.025 0.305 62.7

0.022 0.018 0.169 73.5

0.021 0.018 0.169 74.7

0.020 0.017 0.167 76.7

0.019 0.016 0.141 84.6

0.018 0.015 0.141 85.5

0.018 0.015 0.140 85.7

0.018 0.015 0.140 87.3

] ] ] ]

0.018 0.015 0.140 87.9
K, the
calcul

ions

an

.9

.9

.1

.2

.4

.0

.4

.3

.7

.2

.0

.6
gression iteration �SLRI�.
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.3 Complexity Estimation
e quantify the complexity of the SLRI method in terms of
ultiplication operations for each iteration step. The mul-

iplication of UK
T with Ai and Bi can be performed just once

nd in advance �see Eqs. �28� and �29��. Also the multipli-
ation of UK

T with r� can be performed just once for each
iven reflectance spectrum. Hence, the resulting number of
ultiplications for each iteration step is equivalent to Eq.

13�, when we replace the spectral rate N by the effective
imension of the Neugebauer subspace K, i.e.,

�K,m� = �2m−1 − m� + K · 2m + 2K . �30�

sing a common m=6 printer, the effective dimension can
sually be chosen as K=9, and the number of multiplica-
ions is

�9,6� = �26−1 − 6� + 9 · 26 + 2 · 9 = 620, �31�

hat is, only 30% of the multiplications needed for each
teration step of the LRI method; see Eq. �14�.

Experiments
he aim of the following simulation experiments was to
alidate the accuracy of the SLRI method for a variety of K
alues compared to the plain LRI method by means of
pectral RMS and colorimetric errors. The Neugebauer pri-
aries were chosen from a Canon �i9900, CMYKRG dye-

ased� and an Epson �Stylus Pro 5500, CMYKOG

able 3 Colorimetric results for the Canon printer in Simulation I. F
alculated for all Yule–Nielsen n-values. A K value of 31 is similar t

K


E00, A

Mean Std Max Me

1 12.1 9.2 62.8 12

2 8.1 6.8 61.1 9

3 2.0 2.4 29.4 2

4 1.6 2.4 30.1 1

5 1.3 2.0 26.4 1

6 1.0 1.6 25.6 0

7 0.7 0.9 18.8 0

8 0.6 0.5 13.6 0

9 0.6 0.5 13.4 0

10 0.5 0.4 13.4 0

11 0.5 0.4 13.4 0

] ] ] ]

31 0.5 0.4 12.3 0
igment-based� printer and are shown in Fig. 3. For the

ournal of Electronic Imaging 043014-
simulation we used all combinations of Yule–Nielsen fac-
tors n=1,2 , . . . ,10 and K=1, . . . ,N, where the sampling
rate was chosen to be N=31.

In Simulation I, in-gamut reflectance spectra were used
as input to the SLRI and LRI methods. These spectra were
constructed using a YNSN model and the following colo-
rant combinations:

Canon: �C,M,Y,K,R,G�T � 
0,0.2,0.4,0.6,0.8,1�6, �32�

Epson: �C,M,Y,K,O,G�T � 
0,0.2,0.4,0.6,0.8,1�6. �33�

The �-factor for the termination criteria used by the LRI
method �see Section 1.3� was set to �=5·10−5.

In Simulation II, two multispectral images were used to
validate the behavior of the SLRI method dealing with out-
of-gamut spectra �see Fig. 4�. These images are part of a
free available database of multispectral images published
on the website of the University of Joensuu, Finland �http://
spectral.joensuu.fi/� �cf. Ref. 24�. The correlation of neigh-
boring pixels was used to reduce the iteration number. For
this purpose the pixels in the images were arranged row-
wise, and the separation of the previous pixel was used as
start value of the current pixel. The �-factor was set to �
=10−4.

For both simulations, spectral RMS and colorimetric er-
rors were calculated between the given reflection spectra

h K, the mean, standard deviation, and maximal 
E00-values were
lain LRI method.

E00, C 
E00, F11

Std Max Mean Std Max

8.7 75.5 12.7 9.2 75.7

7.8 72.5 10.2 8.1 73.1

2.2 26.4 2.7 3.1 34.1

2.1 27.8 2.1 2.8 34.7

1.5 20.0 1.8 2.3 28.8

1.2 18.5 1.3 1.8 27.0

0.8 13.9 1.0 1.2 19.6

0.5 11.7 0.8 1.0 18.9

0.5 12.2 0.8 0.8 19.2

0.4 12.1 0.8 0.8 19.1

0.4 12.1 0.8 0.8 19.1

] ] ] ] ]

0.4 11.9 0.7 0.7 19.0
or eac
o the p
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and the predictions resulting from the LRI or SLRI optimi-
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ation. In this article, the spectral RMS difference between
wo discrete spectra x�1 ,x�2� �0,1�N was calculated as
ollows:

MS�x�1,x�2� =
	x�1 − x�2	2

�N
. �34�

he authors want to reemphasize that the prediction accu-
acy of the YNSN model in terms of spectral or colorimet-
ic errors is not the subject of this article. The focus of the
ollowing simulation experiments is set to the inversion ac-
uracy particularly concerning the used dimension K of the
eugebauer subspace.

able 4 Colorimetric results for the Epson printer in Simulation I. F
alculated for all Yule–Nielsen n-values. A K value of 31 is similar t

K


E00, A

Mean Std Max Me

1 15.8 9.1 49.8 15

2 7.9 6.3 41.2 9

3 2.7 2.5 22.4 2

4 0.7 0.5 4.7 0

5 0.6 0.4 5.3 0

6 0.6 0.4 5.2 0

7 0.6 0.4 4.3 0

8 0.6 0.4 4.2 0

9 0.6 0.4 4.6 0

10 0.6 0.4 4.7 0

11 0.6 0.4 4.7 0

] ] ] ]

31 0.6 0.4 4.7 0

ig. 5 Mean RMS error dependent on the Yule–Nielsen n-value and
he K value for the Canon printer in Simulation I. For K�7, there are
o major changes in accuracy. A K value of 31 is similar to the plain

RI method.

ournal of Electronic Imaging 043014-
4 Results and Discussion
The spectral RMS results of Simulation I are shown in
Table 2, where the average iteration numbers are also pre-
sented. Some colorimetric results in terms of 
E00 values
for the illuminants CIE A �incandescent light�, CIE C �av-
erage daylight�, and CIE F11 �fluorescent lamp� can be
found in Tables 3 and 4. Figures 5 and 6 show the RMS
accuracy dependent on the Yule–Nielsen n-factor and the
Neugebauer subspace dimension K.

The results for in-gamut spectra show that already small
K values lead to acceptable accuracy. A mean RMS error
smaller than 0.02, a value that is sufficient in various
applications,25 is reached for K�6 for both printers, as can

h K, the mean, standard deviation, and maximal 
E00-values were
lain LRI method.

E00, C 
E00, F11

Std Max Mean Std Max

8.4 50.5 15.6 8.7 50.8

7.2 49.7 9.0 7.4 46.7

1.8 17.7 2.4 2.3 22.4

0.6 5.9 0.9 0.7 7.5

0.5 5.9 0.8 0.6 8.1

0.5 5.9 0.8 0.6 8.0

0.5 5.9 0.7 0.5 6.8

0.4 5.8 0.7 0.5 6.8

0.4 6.2 0.7 0.5 7.0

0.4 6.2 0.7 0.5 7.3

0.4 6.2 0.7 0.5 7.2

] ] ] ] ]

0.4 6.2 0.7 0.5 7.2

Fig. 6 Mean RMS error dependent on the Yule–Nielsen n-value and
the K value for the Epson printer in Simulation I. For K�8, there are
no major changes in accuracy. A K value of 31 is similar to the plain
or eac
o the p
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e seen from Table 2. This is also reflected in the colori-
etric results, which are already smaller than 1 on average

or K�6. The reason for some large maximal colorimetric
rrors is the behavior of color differences for very dark
eflectances. A small difference in reflectance space can re-
ult in a large color difference �see Fig. 7�. All large colo-
imetric differences correspond to reflectances near zero. It
s widely recognized that when minimizing spectral RMS
rrors, large colorimetric errors for dark colors can be the
onsequence.

For K�8, the mean number of iterations is nearly un-
hanged. The results of the SLRI method for K�8 are

Table 5 RMS results for the Canon printer in Si
and maximal RMS error and the average num
n-values. A K value of 31 is similar to the plain

K

Young Girl

RMS Iterat

Mean Std Max Me

1 1.139 0.544 2.355 10

2 0.609 0.308 1.649 12

3 0.178 0.062 0.501 14

4 0.176 0.063 0.501 16

5 0.160 0.054 0.501 17

6 0.151 0.049 0.501 19

7 0.149 0.048 0.499 18

8 0.149 0.048 0.499 18

9 0.149 0.048 0.499 18

10 0.149 0.048 0.500 18

11 0.149 0.048 0.500 18

] ] ] ] ]

31 0.149 0.048 0.500 18

ig. 7 The given reflectance and the reproduction that produce the
E00 error of 19.0 for the illuminant CIE F11 �see Table 3�. The
pectral RMS difference between these reflectances is only 0.031.
ournal of Electronic Imaging 043014-
similar to the LRI method. To further decrease the error
rates, a smaller �-value can be selected, leading to addi-
tional iterations.

For Simulation II, Table 5 shows the results for the
Canon printer and Table 6 those for the Epson printer. As
expected, the RMS error rates are significantly higher than
in Simulation I because the images contain out-of-gamut
reflectances. An implicitly spectral gamut mapping is per-
formed by the SLRI/LRI methods by choosing an in-gamut
reflectance with the smallest RMS distance to the given
pixel reflectance in 1 /n space. For practical applications,
this kind of spectral gamut mapping often achieves visually
poor results and should be replaced by a transformation
better related to the human visual system. However, in our
experiments we are interested in the minimal number of
required dimensions to achieve the same RMS error rates
as the LRI method.

In this simulation, as well as in Simulation I, the results
validate the mathematical conclusions: For both printers
and both images, a significant improvement of RMS error
rates cannot be observed for K�6. Also, the number of
iterations is stable for these K values and is clearly smaller
compared with Simulation I due to utilization of the corre-
lation of neighboring pixels. Finally, in Table 7 we give
numerical examples of the mean number of multiplications
necessary to invert the YNSN model for a pixel reflectance.

n II. For each K, the mean, standard deviation,
iterations were calculated for all Yule–Nielsen

ethod.

Fruits and Flowers

RMS Iterations

Mean Std Max Mean

0.525 0.386 2.309 10.0

0.257 0.156 1.234 11.7

0.192 0.105 0.687 13.2

0.157 0.086 0.688 20.4

0.150 0.085 0.688 21.9

0.143 0.077 0.671 23.1

0.142 0.076 0.672 22.8

0.141 0.075 0.676 23.1

0.141 0.074 0.679 22.9

0.140 0.074 0.677 23.0

0.140 0.074 0.677 23.0

] ] ] ]

0.141 0.074 0.677 23.0
mulatio
ber of
LRI m

ions

an
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The experiments show that minor revisions of the LRI
method can significantly reduce the computational effort
without changing the inversion accuracy.

5 Conclusion
We have shown how simple revisions of the linear regres-
sion iteration �LRI� method to invert the Yule–Nielsen
spectral Neugebauer �YNSN� model can significantly re-
duce the computational complexity without changing the
inversion accuracy. This new technique, the subspace linear
regression iteration �SLRI� method, uses the length-
preserving properties of unitary matrices and the low effec-

n II. For each K, the mean, standard deviation,
iterations were calculated for all Yule–Nielsen

ethod.

Fruits and Flowers

RMS Iterations

Mean Std Max Mean

0.409 0.365 2.237 10.1

0.288 0.200 1.100 11.7

0.230 0.147 0.793 14.6

0.221 0.147 0.785 21.1

0.203 0.143 0.782 20.4

0.203 0.143 0.783 20.5

0.203 0.143 0.783 20.7

0.202 0.142 0.783 21.3

0.202 0.142 0.783 21.4

0.202 0.142 0.783 21.5

0.202 0.142 0.784 21.5

] ] ] ]

0.202 0.142 0.784 21.4
Table 6 RMS results for the Epson printer in Simulatio
and maximal RMS error and the average number of
n-values. A K value of 31 is similar to the plain LRI m

K

Young Girl

RMS Iterations

Mean Std Max Mean

1 0.770 0.405 2.12 11.0

2 0.295 0.217 1.44 12.3

3 0.188 0.067 0.460 13.6

4 0.156 0.058 0.445 21.9

5 0.120 0.041 0.265 25.5

6 0.120 0.041 0.264 25.5

7 0.119 0.040 0.266 25.2

8 0.118 0.040 0.267 25.9

9 0.118 0.040 0.267 25.9

10 0.118 0.040 0.267 25.9

11 0.118 0.040 0.267 25.8

] ] ] ] ]

31 0.118 0.040 0.267 25.9
able 7 Numerical examples of the mean number of multiplications
hat were necessary to invert the YNSN model for a pixel reflectance

rinter �Image� SLRI �K=7� LRI

anon �Young Girl� 9,245 37,918

anon �Fruits and Flowers� 11,343 47,656

pson �Young Girl� 12,515 53,665

pson �Fruits and Flowers� 10,319 44,341

tive dimension of spectral printer gamuts to perform the

Oct–Dec 2007/Vol. 16(4)9
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terations within the Neugebauer subspace. Simulation ex-
eriments using two six-colorant printers showed the SLRI
o have a mean reduction of multiplication operations of
ver 70% compared to the LRI while retaining inversion
ccuracy.
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Appendix: Example of the YNSN Model
Decomposition in 1/n Space
The YNSN model of a CMY printer can be decomposed for
cyan in 1 /n space according to Eqs. �6�, �10�, and �11� as
follows:

R� ��c,�m,�y� = A� C��m,�y��c + B� C��m,�y� �35�

=ACv�C��m,�y��c + BCv�C��m,�y� , �36�

where the matrices Ac and Bc and the vector v�c can be

stated as
c = �
�− R1,�

1/n + R2,�
1/n�T

�R1,�
1/n − R2,�

1/n − R3,�
1/n + R4,�

1/n�T

�R1,�
1/n − R2,�

1/n − R5,�
1/n + R6,�

1/n�T

�− R1,�
1/n + R2,�

1/n + R3,�
1/n − R4,�

1/n + R5,�
1/n − R6,�

1/n − R7,�
1/n + R8,�

1/n�T
�

T

, �37�
c = �
�R1,�

1/n�T

�− R1,�
1/n + R3,�

1/n�T

�− R1,�
1/n + R5,�

1,n�T

�R1,�
1/n − R3,�

1/n − R5,�
1/n + R7,�

1/n�T
�

T

,

�38�

�c��m,�y� = �
1

�m

�y

�m�y

� .

n a similar manner, the YNSN model can be decomposed
or magenta and yellow.
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